Pluripotent fates and tissue regenerative potential of adult olfactory bulb neural stem and progenitor cells.
نویسندگان
چکیده
Neural stem cells and progenitor cells reside in the adult olfactory bulb (OB) core of mouse, rat, and human. Adult rodent OB core cells have the capacities for self-renewal and multipotency and form neurospheres. The differentiation fates of these neurosphere-forming cells were studied in vitro and in vivo. Adult OB neurospheres were comprised of stem cells and neuronal and glial progenitor cells. OB neurospheres in co-culture with primary embryonic striatal neurons and cortical neurons generated cells with morphological and neurochemical phenotypes of striatal and cortical neurons, respectively. Transplanted OB cells, delivered as dissociated cells or as intact neurospheres, dispersed, survived for long-term, extended neurites, migrated, expressed neuronal or glial markers, and formed synapses with host neurons when placed into the environment of the nonlesioned and lesioned central nervous system (CNS). Grafted cells in the CNS also showed angiogenic capacity by forming blood vessels. In a model of spinal motor neuron degeneration, adult OB neurosphere cells transplanted into lesioned spinal cord adopted phenotypes of motor neurons and had a robust potential to become oligodendrocytes. OB core cells in co-culture with skeletal myoblasts generated skeletal muscle cells. Chimeric skeletal muscle was formed when mouse OB neurospheres were transplanted into rat skeletal muscle. Within skeletal muscle, adult OB neurosphere cells became myogenic progenitor cells to form myotubes de novo. We conclude that the adult mammalian OB is a source of pluripotent neural stem cells and progenitor cells that have the potential to become, in a context-dependent manner, specific types of cells for regeneration of tissues in brain, spinal cord, and muscle.
منابع مشابه
Immunohistological and electrophysiological characterization of Globose basal stem cells
Objective(s): In the past few decades, variety of foetal, embryonic and adult stem and progenitor cells have been tried with conflicting outcome for cell therapy of central nervous system injury and diseases. Cellular characteristics and functional plasticity of Globose basal stem cells (GBCs) residing in the olfactory epithelium of rat olfactory mucosa have not been studied in the past by the ...
متن کاملThe Proliferation Study of hiPS Cell-Derived Neuronal Progenitors on Poly-Caprolactone Scaffold
Introduction: The native inability of nervous system to regenerate, encourage researchers to consider neural tissue engineering as a potential treatment for spinal cord injuries. Considering the suitable characteristics of induced pluripotent stem cells (iPSCs) for tissue regeneration applications, in this study we investigated the adhesion, viability and proliferation of neural progenitors (de...
متن کاملExtract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells
Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...
متن کاملFingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors
Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...
متن کاملFingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors
Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurotrauma
دوره 21 10 شماره
صفحات -
تاریخ انتشار 2004